Is flame misbehaving?

Here on Earth, when a flame burns, it heats the surrounding atmosphere, causing the air to expand and become less dense. The pull of gravity draws colder, denser air down to the base of the flame, displacing the hot air, which rises. This convection process feeds fresh oxygen to the fire, which burns until it runs out of fuel. The upward flow of air is what gives a flame its teardrop shape and causes it to flicker.

But odd things happen in space, where gravity loses its grip on solids, liquids and gases. Without gravity, hot air expands but doesn’t move upward. The flame persists because of the diffusion of oxygen, with random oxygen molecules drifting into the fire. Absent the upward flow of hot air, fires in microgravity are dome-shaped or spherical—and sluggish, thanks to meager oxygen flow. “If you ignite a piece of paper in microgravity, the fire will just slowly creep along from one end to the other,” says Dietrich. “Astronauts are all very excited to do our experiments because space fires really do look quite alien.”

Advertisements

2 thoughts on “Is flame misbehaving?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s